Reinforced Concrete: A Fundamental Approach – Edward G. Nawy – 6th Edition

Descripción

Esta obra para cursos de un semestre en Concreto Armado y de ingeniería civil. Ofrece una cobertura exhaustiva del comportamiento de los materiales a corto y largo plazo, el diseño de mezclas de concreto, la fiabilidad y seguridad estructural, el comportamiento en servicio de vigas y losas bidireccionales, la torsión y el corte, el diseño de sistemas de losas y placas estructurales bidireccionales, la continuidad en las estructuras de concreto, el diseño sísmico de edificios de gran altura en zonas de alta intensidad sísmica, el diseño LRFD de estructuras de puentes y el diseño de estructuras de mampostería.

Ahora, reflejando el nuevo Código ACI 318-08 de 2008 y el nuevo Código Internacional de Construcción $IBC-2006$, la Sexta Edición de este texto de vanguardia ha sido revisada ampliamente para presentar desarrollos de última generación en concreto reforzado. Analiza el diseño de elementos de hormigón armado a través de un procedimiento único y práctico de prueba y ajuste paso a paso. La narrativa se complementa con diagramas de flujo para guiar a los estudiantes de manera lógica a través del proceso de aprendizaje. Amplias fotografías de pruebas instructivas de miembros de concreto disminuyen la necesidad de pruebas de laboratorio reales.

Ver más
  • 1 INTRODUCTION
    1.1 Historical Development of Structural Concrete
    1.2 Basic Hypothesis of Reinforced Concrete
    1.3 Analysis versus Design of Sections

    2 CONCRETE-PRODUCING MATERIALS
    2.1 Introduction
    2.2 Portland Cement
    2.3 Water and Air
    2.4 Aggregates
    2.5 Admixtures
    Selected References

    3 CONCRETE
    3.1 Introduction
    3.2 Proportioning Theory—Normal Strength Concrete
    3.3 High-Strength High-Performance Concrete Mixtures Design
    3.4 PCA Method of Mixture Design
    3.5 Estimating Compressive Strength of a Trial Mixture Using the Specified Compressive Strength
    3.6 Mixture Designs for Nuclear-Shielding Concrete
    3.7 Quality Tests on Concrete
    3.8 Placing and Curing of Concrete
    3.9 Properties of Hardened Concrete
    3.10 High-Strength Concrete
    Selected References
    Problems for Solution

    4 REINFORCED CONCRETE
    4.1 Introduction
    4.2 Types and Properties of Steel Reinforcement
    4.3 Bar Spacing and Concrete Cover for Steel Reinforcement
    4.4 Concrete Structural Systems
    4.5 Reliability and Structural Safety of Concrete Components
    4.6 ACI Load Factors and Safety Margins
    4.7 Design Strength versus Nominal Strength: Strength Reduction Factor
    4.8 Quality Control and Quality Assurance
    Selected References

    5 FLEXURE IN BEAMS
    5.1 Introduction
    5.2 The Equivalent Rectangular Block
    5.3 Strain Limits Method for Analysis and Design
    5.4 Analysis of Singly Reinforced Rectangular Beams for Flexure
    5.5 Trial-and-Adjustment Procedures for the Design of Singly Reinforced Beams
    5.6 One-Way Slabs
    5.7 Doubly Reinforced Sections
    5.8 Nonrectangular Sections
    5.9 Analysis of T and L Beams
    5.10 Trial-and-Adjustment Procedure for the Design of Flanged Sections
    5.11 Concrete Joist Construction
    5.12 SI Expressions and Example for Flexural Design of Beams
    Selected References
    Problems for Solution

    6 SHEAR AND DIAGONAL TENSION IN BEAMS
    6.1 Introduction
    6.2 Behavior of Homogeneous Beams
    6.3 Behavior of Reinforced Concrete Beams as Nonhomogeneous Sections
    6.4 Reinforced Concrete Beams without Diagonal Tension Reinforcement
    6.5 Diagonal Tension Analysis of Slender and Intermediate Beams
    6.6 Web Steel Planar Truss Analogy
    6.7 Web Reinforcement Design Procedure for Shear
    6.8 Examples of the Design of Web Steel for Shear
    6.9 Deep Beams: Non-Linear Approach
    6.10 Brackets or Corbels
    6.11 Strut and Tie Model Analysis and Design of Concrete Elements
    6.12 SI Design Expressions and Example for Shear Design
    Selected References
    Problems for Solution

    7 TORSION
    7.1 Introduction
    7.2 Pure Torsion in Plain Concrete Elements
    7.3 Torsion in Reinforced Concrete Elements
    7.4 Shear–Torsion–Bending Interaction
    7.5 ACI Design of Reinforced Concrete Beams Subjected to Combined Torsion, Bending, and Shear
    7.6 SI Metric Torsion Expressions and Example for Torsion Design
    Selected References
    Problems for Solution

    8 SERVICEABILITY OF BEAMS AND ONE-WAY SLABS
    8.1 Introduction
    8.2 Significance of Deflection Observation
    8.3 Deflection Behavior of Beams
    8.4 Long-Term Deflection
    8.5 Permissible Deflections in Beams and One-Way Slabs
    8.6 Computation of Deflections
    8.7 Deflection of Continuous Beams
    8.8 Operational Deflection Calculation Procedure and Flowchart
    8.9 Deflection Control in One-Way Slabs
    8.10 Flexural Cracking in Beams and One-Way Slabs
    8.11 Tolerable Crack Widths
    8.12 ACI 318 Code Provisions for Control of Flexural Cracking
    8.13 SI Conversion Expressions and Example of Deflection Evaluation
    Selected References
    Problems for Solution

    9 COMBINED COMPRESSION AND BENDING: COLUMNS
    9.1 Introduction
    9.2 Types of Columns
    9.3 Strength of Non-Slender Concentrically Loaded Columns
    9.4 Strength of Eccentrically Loaded Columns: Axial Load and Bending
    9.5 Strain Limits Method to Establish Reliability Factor and Analysis and Design of Compression Members
    9.6 Whitney’s Approximate Solution in Lieu of Exact Solutions
    9.7 Column Strength Reduction Factor
    9.8 Load–Moment Strength Interaction Diagrams (P–M Diagrams) for Columns Controlled by Material Failure
    9.9 Practical Design Considerations
    9.10 Operational Procedure for the Design of Nonslender Columns
    9.11 Numerical Examples for Analysis and Design of Nonslender Columns
    9.12 Limit State at Buckling Failure (Slender or Long Columns)
    9.13 Moment Magnification: First-Order Analysis
    9.14 Second-Order Frame Analysis and the P-? effect
    9.15 Operational Procedure and Flowchart for the Design of Slender Columns
    9.16 Compression Members in Biaxial Bending
    9.17 SI Expressions and Example for the Design of Compression Members
    Selected References
    Problems for Solution

    10 BOND DEVELOPMENT OF REINFORCING BARS
    10.1 Introduction
    10.2 Bond Stress Development
    10.3 Basic Development Length
    10.4 Development of Flexural Reinforcement in Continuous Beams
    10.5 Splicing of Reinforcement
    10.6 Examples of Embedment Length and Splice Design for Beam Reinforcement
    10.7 Typical Detailing of Reinforcement and Bar Scheduling
    Selected References
    Problems for Solution

    11 DESIGN OF TWO-WAY SLABS AND PLATES
    11.1 Introduction: Review of Methods
    11.2 Flexural Behavior of Two-Way Slabs and Plates
    11.3 The Direct Design Method
    11.4 Distributed Factored Moments and Slab Reinforcement by the Direct Design Method
    11.5 Design and Analysis Procedure: Direct Design Method
    11.6 Equivalent Frame Method for Floor Slab Design
    11.7 SI Two-Way Slab Design Expressions and Example
    11.8 Direct Method of Deflection Evaluation
    11.9 Cracking Behavior and Crack Control in Two-Way-Action Slabs and Plates
    11.10 Yield-Line Theory for Two-Way Action Plates
    Selected References
    Problems for Solution

    12 FOOTINGS
    12.1 Introduction
    12.2 Types of Foundations
    12.3 Shear and Flexural Behavior of Footings
    12.4 Soil Bearing Pressure at Base of Footings
    12.5 Design Considerations in Flexure
    12.6 Design Considerations in Shear
    12.7 Operational Procedure for the Design of Footings
    12.8 Examples of Footing Design
    12.9 Structural Design of Other Types of Foundations
    Selected References
    Problems for Solution

    13 CONTINUOUS REINFORCED CONCRETE STRUCTURES
    13.1 Introduction
    13.2 Longhand Displacement Methods
    13.3 Force Method of Analysis
    13.4 Displacement Method of Analysis
    13.5 Finite-Element Methods and Computer Usage
    13.6 Approximate Analysis of Continuous Beams and Frames
    13.7 Limit Design (Analysis) of Indeterminate Beams and Frames
    Selected References
    Problems for Solution

    14 INTRODUCTION TO PRESTRESSED CONCRETE
    14.1 Basic Concepts of Prestressing
    14.2 Partial Loss of Prestress
    14.3 Flexural Design of Prestressed Concrete Elements
    14.4 Serviceability Requirements in Prestressed Concrete Members
    14.5 Ultimate-Strength Flexural Design of Prestressed Beams
    14.6 Example 14.5: Ultimate-Strength Design of Prestressed Simply Supported Beam by Strain Compatibility
    14.7 Web Reinforcement Design Procedure for Shear
    Selected References
    Problems for Solution

    15 LRFD AASHTO DESIGN OF CONCRETE BRIDGE STRUCTURES
    15.1 LRFD Truck Load Specifications
    15.2 Flexural Design Considerations
    15.3 Shear Design Considerations
    15.4 Horizontal Interface Shear
    15.5 Combined Shear and Torsion
    15.6 Step-by-Step LRFD Design Procedures
    15.7 LRFD Design of Bulb-Tee Bridge Deck: Example 15.1
    15.8 LRFD Shear and Deflection Design: Example 15.2
    Selected References
    Problems for Solution

    16 SEISMIC DESIGN OF CONCRETE STRUCTURES
    16.1 Introduction: Mechanism of Earthquakes
    16.2 Spectral Response Method
    16.3 Equivalent Lateral Force Method
    16.4 Simplified Analysis Procedure for Seismic Design of Buildings
    16.5 Other Aspects in Seismic Design
    16.6 Flexural Design of Beams and Columns
    16.7 Seismic Detailing Requirements for Beams and Columns
    16.8 Horizontal Shear in Beam–Column Connections (Joints)
    16.9 Design of Shear Walls
    16.10 Design Procedure for Earthquake-Resistant Structures
    16.11 Example 16.1: Seismic Base Shear and Lateral Forces and Moments by the International Building Code (IBC) Approach
    16.12 Example 16.2: Design of Confining Reinforcement for Beam–Column Connections
    16.13 Example 16.3: Transverse Reinforcement in a Beam Potential Hinge Region
    16.14 Example 16.4: Probable Shear Strength of Monolithic Beam–Column Joint
    16.15 Example 16.5: Seismic Shear Wall Design and Detailing
    Selected References
    Problems for Solution

    17 STRENGTH DESIGN OF MASONRY STRUCTURES
    17.1 Introduction
    17.2 Design Principles
    17.3 Strength Reduction Factors
    17.4 Flexural Strength
    17.5 Shear Strength
    17.6 Axial Compression Strength
    17.7 Anchorage of Masonry Reinforcement
    17.8 Prestressed Masonry
    17.9 Deflection
    17.10 Example 17.9: Detailed Design of CMU Lintel in Seismic Zone
    17.11 Example 17.10: Design of Grouted CMU Wall Supporting Beam Lintel of Example 17.9
    17.12 Example 17.11: Tension Anchor Design
    Selected References
    Problems for Solution
    APPENDIX A TABLES AND NOMOGRAMS
    INDEX
    • Título: Reinforced Concrete: A Fundamental Approach
    • Autor/es:
    • ISBN-10: 0132417030
    • ISBN-13: 9780132417037
    • Edición: 6ta Edición
    • Año de edición: 2008
    • Tema: Civil
    • Subtema: Concreto Armado
    • Tipo de Archivo: eBook
    • Idioma: eBook en Inglés
    Citar Libro

Descargar Reinforced Concrete: A Fundamental Approach

Tipo de Archivo
Idioma
Descargar RAR
Descargar PDF
Páginas
Tamaño
Libro
Inglés
1166 pag.
8 mb

¿Qué piensas de este libro?

No hay comentarios

guest
Valorar este libro:
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x