Fundamentals of Aerodynamics – John D. Anderson – 5th Edition

Descripción

De acuerdo con sus ediciones anteriores más vendidas, Fundamentos de la aerodinámica, quinta edición de John Anderson, ofrece la descripción general más legible, interesante y actualizada de la aerodinámica que se puede encontrar en cualquier texto.

Se ha conservado la organización clásica del texto, así como sus acertadas características pedagógicas: hojas de ruta de los capítulos, recuadros de vista previa, recuadros de diseño y sección de resumen. Aunque los fundamentos no suelen cambiar con el tiempo, las aplicaciones sí lo hacen, por lo que se actualizan varios contenidos detallados y las cifras existentes se reemplazan con datos e ilustraciones modernos. Temas históricos, ejemplos cuidadosamente desarrollados, numerosas ilustraciones y una amplia selección de problemas de capítulos se encuentran a lo largo del texto para motivar y desafiar a los estudiantes de aerodinámica.

Ver más
  • Chapter 1 Aerodynamics: Some Introductory Thoughts
    1.1 Importance of Aerodynamics: Historical
    1.2 Aerodynamics: Classification and Practical
    1.3 Road Map for This Chapter
    1.4 Some Fundamental Aerodynamic Variables
    1.5 Aerodynamic Forces and Moments
    1.6 Center of Pressure
    1.7 Dimensional Analysis: The Buckingham
    1.8 Flow Similarity
    1.9 Fluid Statics: Buoyancy Force
    1.10 Types of Flow
    1.11 Viscous Flow: Introduction to Boundary
    1.12 Applied Aerodynamics: The Aerodynamic
    1.13 Historical Note: The Illusive Center of Pressure
    1.14 Historical Note: Aerodynamic Coefficients
    1.15 Summary
    1.16 Problems

    Chapter 2 Aerodynamics: Some Fundamental Principles and Equations
    2.1 Introduction and Road Map
    2.2 Review of Vector Relations
    2.3 Models of the Fluid: Control Volumes and Fluid Elements
    2.4 Continuity Equation
    2.5 Momentum Equation
    2.6 An Application of the Momentum Equation: Drag of a Two-Dimensional Body
    2.7 Energy Equation
    2.8 Interim Summary
    2.9 Substantial Derivative
    2.10 Fundamental Equations in Terms of the Substantial Derivative
    2.11 Pathlines, Streamlines, and Streaklines of a Flow
    2.12 Angular Velocity, Vorticity, and Strain
    2.13 Circulation
    2.14 Stream Function
    2.15 Velocity Potential
    2.16 Relationship Between the Stream Function and Velocity Potential
    2.17 How Do We Solve the Equations?
    2.18 Summary
    2.19 Problems

    Chapter 3 Fundamentals of Inviscid, Incompressible Flow
    3.1 Introduction and Road Map
    3.2 Bernoulli’s Equation
    3.3 Incompressible Flow in a Duct: The Venturi and Low-Speed Wind Tunnel
    3.4 Pitot Tube: Measurement of Airspeed
    3.5 Pressure Coefficient
    3.6 Condition on Velocity for Incompressible Flow
    3.7 Governing Equation for Irrotational, Incompressible Flow: Laplace’s Equation
    3.8 Interim Summary
    3.9 Uniform Flow: Our First Elementary Flow
    3.10 Source Flow: Our Second Elementary Flow
    3.11 Combination of a Uniform Flow with a Source and Sink
    3.12 Doublet Flow: Our Third Elementary Flow
    3.13 Nonlifting Flow over a Circular Cylinder
    3.14 Vortex Flow: Our Fourth Elementary Flow
    3.15 Lifting Flow over a Cylinder
    3.16 The Kutta-Joukowski Theorem and the Generation of Lift
    3.17 Nonlifting Flows over Arbitrary Bodies: The Numerical Source Panel Method
    3.18 Applied Aerodynamics: The Flow over a Circular Cylinder—The Real Case
    3.19 Historical Note: Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics
    3.20 Historical Note: d’Alembert and His Paradox
    3.21 Summary
    3.22 Problems

    Chapter 4 Incompressible Flow over Airfoils
    4.1 Introduction
    4.2 Airfoil Nomenclature
    4.3 Airfoil Characteristics
    4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils: The Vortex Sheet
    4.5 The Kutta Condition
    4.6 Kelvin’s Circulation Theorem and the Starting Vortex
    4.7 Classical Thin Airfoil Theory: The Symmetric Airfoil
    4.8 The Cambered Airfoil
    4.9 The Aerodynamic Center: Additional Considerations
    4.10 Lifting Flows over Arbitrary Bodies: The Vortex Panel Numerical Method
    4.11 Modern Low-Speed Airfoils
    4.12 Viscous Flow: Airfoil Drag
    4.13 Applied Aerodynamics: The Flow over an Airfoil—The Real Case
    4.14 Historical Note: Early Airplane Design and the Role of Airfoil Thickness
    4.15 Historical Note: Kutta, Joukowski, and the Circulation Theory of Lift
    4.16 Summary
    4.17 Problems

    Chapter 5 Incompressible Flow over Finite Wings
    5.1 Introduction: Downwash and Induced Drag
    5.2 The Vortex Filament, the Biot-Savart Law, and Helmholtz’s Theorems
    5.3 Prandtl’s Classical Lifting-Line Theory
    5.4 A Numerical Nonlinear Lifting-Line Method
    5.5 The Lifting-Surface Theory and the Vortex Lattice Numerical Method
    5.6 Applied Aerodynamics: The Delta Wing
    5.7 Historical Note: Lanchester and Prandtl—The Early Development of Finite-Wing Theory
    5.8 Historical Note: Prandtl—The Man
    5.9 Summary
    5.10 Problems

    Chapter 6 Three-Dimensional Incompressible Flow
    6.1 Introduction
    6.2 Three-Dimensional Source
    6.3 Three-Dimensional Doublet
    6.4 Flow over A Sphere
    6.5 General Three-Dimensional Flows: Panel Techniques
    6.6 Applied Aerodynamics: The Flow over a Sphere—The Real Case
    6.7 Applied Aerodynamics: Airplane Lift and Drag
    6.8 Summary
    6.9 Problems

    Chapter 7 Compressible Flow: Some Preliminary Aspects
    7.1 Introduction
    7.2 A Brief Review of Thermodynamics
    7.3 Definition of Compressibility
    7.4 Governing Equations for Inviscid, Compressible Flow
    7.5 Definition of Total (Stagnation) Conditions
    7.6 Some Aspects of Supersonic Flow: Shock Waves
    7.7 Summary
    7.8 Problems

    Chapter 8 Normal Shock Waves and Related Topics
    8.1 Introduction
    8.2 The Basic Normal Shock Equations
    8.3 Speed of Sound
    8.4 Special Forms of the Energy Equation
    8.5 When Is A Flow Compressible?
    8.6 Calculation of Normal Shock-Wave Properties
    8.7 Measurement of Velocity in a Compressible Flow
    8.8 Summary
    8.9 Problems

    Chapter 9 Oblique Shock and Expansion Waves
    9.1 Introduction
    9.2 Oblique Shock Relations
    9.3 Supersonic Flow over Wedges and Cones
    9.4 Shock Interactions and Reflections
    9.5 Detached Shock Wave in Front of a Blunt Body
    9.6 Prandtl-Meyer Expansion Waves
    9.7 Shock-Expansion Theory: Applications to Supersonic Airfoils
    9.8 A Comment on Lift and Drag Coefficients
    9.9 The X-15 and Its Wedge Tail
    9.10 Viscous Flow: Shock-Wave/Boundary-Layer Interaction
    9.11 Historical Note: Ernst Mach—A Biographical Sketch
    9.12 Summary
    9.13 Problems

    Chapter 10 Compressible Flow through Nozzles, Diffusers, and Wind Tunnels
    10.1 Introduction
    10.2 Governing Equations for Quasi-One-Dimensional Flow
    10.3 Nozzle Flows
    10.4 Diffusers
    10.5 Supersonic Wind Tunnels
    10.6 Viscous Flow: Shock-Wave/Boundary-Layer Interaction inside nozzles
    10.7 Summary
    10.8 Problems

    Chapter 12 Subsonic Compressible Flow over Airfoils: Linear Theory
    11.1 Introduction
    11.2 The Velocity Potential Equation
    11.3 The Linearized Velocity Potential Equation
    11.4 Prandtl-Glauert Compressibility Correction
    11.5 Improved Compressibility Corrections
    11.6 Critical Mach Number
    11.7 Drag-Divergence Mach Number: The Sound Barrier
    11.8 The Area Rule
    11.9 The Supercritical Airfoil
    11.10 CFD Applications: Transonic Airfoils and Wings
    11.11 Applied Aerodynamics: The Blended Wing Body
    11.12 Historical Note: High-Speed Airfoils—Early Research and Development
    11.13 Historical Note: The Origin of The Swept-Wing Concept
    11.14 Historical Note: Richard T. Whitcomb—Architect of the Area Rule and the Supercritical Wing
    11.15 Summary

    Chapter 12 Linearized Supersonic Flow
    12.1 Introduction
    12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula
    12.3 Application to Supersonic Airfoils
    12.4 Viscous Flow: Supersonic Airfoil Drag
    12.5 Summary
    12.6 Problems

    Chapter 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow
    13.1 Introduction: Philosophy of Computational Fluid Dynamics
    13.2 Elements of the Method of Characteristics
    13.3 Supersonic Nozzle Design
    13.4 Elements of Finite-Difference Methods
    13.5 The Time-Dependent Technique: Application to Supersonic Blunt Bodies
    13.6 Flow over Cones
    13.7 Summary
    13.8 Problem

    Chapter 14 Elements of Hypersonic Flow
    14.1 Introduction
    14.2 Qualitative Aspects of Hypersonic Flow
    14.3 Newtonian Theory
    14.4 The Lift and Drag of Wings at Hypersonic Speeds: Newtonian Results for a Flat Plate at Angle of Attack
    14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory
    14.6 Mach Number Independence
    14.7 Hypersonics and Computational Fluid Dynamics
    14.8 Hypersonic Viscous Flow: Aerodynamic Heating
    14.9 Applied Hypersonic Aerodynamics: Hypersonic Waveriders
    14.10 Summary
    14.11 Problems

    Chapter 15 Introduction to the Fundamental Principles and Equations of Viscous Flow
    15.1 Introduction
    15.2 Qualitative Aspects of Viscous Flow
    15.3 Viscosity and Thermal Conduction
    15.4 The Navier-Stokes Equations
    15.5 The Viscous Flow Energy Equation
    15.6 Similarity Parameters
    15.7 Solutions of Viscous Flows: A Preliminary Discussion
    15.8 Summary
    15.9 Problems

    Chapter 16 A Special Case: Couette Flow
    16.1 Introduction
    16.2 Couette Flow: General Discussion
    16.3 Incompressible (Constant Property) Couette Flow
    16.4 Compressible Couette Flow
    16.5 Summary

    Chapter 17 Introduction to Boundary Layers
    17.1 Introduction
    17.2 Boundary-Layer Properties
    17.3 The Boundary-Layer Equations
    17.4 How Do We Solve the Boundary-Layer Equations?
    17.5 Summary

    Chapter 18 Laminar Boundary Layers
    18.1 Introduction
    18.2 Incompressible Flow over a Flat Plate: The Blasius Solution
    18.3 Compressible Flow over a Flat Plate
    18.4 The Reference Temperature Method
    18.5 Stagnation Point Aerodynamic Heating
    18.6 Boundary Layers over Arbitrary Bodies: Finite-Difference Solution
    18.7 Summary
    18.8 Problems

    Chapter 19 Turbulent Boundary Layers
    19.1 Introduction
    19.2 Results for Turbulent Boundary Layers on a Flat Plate
    19.3 Turbulence Modeling
    19.4 Final Comments
    19.5 Summary
    19.6 Problems

    Chapter 20 Navier-Stokes Solutions: Some Examples
    20.1 Introduction
    20.2 The Approach
    20.3 Examples of Some Solutions
    20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag
    20.5 Summary

    Appendix A Isentropic Flow Properties
    Appendix B Normal Shock Properties
    Appendix C Prandtl-Meyer Function and Mach Angle
    Appendix D Standard Atmosphere, SI Units
    Appendix E Standard Atmosphere, English Engineering Units
    Bibliography
    Index
  • Citar Libro

Descargar Fundamentals of Aerodynamics

Tipo de Archivo
Idioma
Descargar RAR
Descargar PDF
Páginas
Tamaño
Libro
Inglés
1131 pag.
17 mb

¿Qué piensas de este libro?

No hay comentarios

guest
Valorar este libro:
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x