Analytic Combinatorics – Philippe Flajolet, Robert Sedgewick – 1st Edition

Descripción

La combinatoria analítica tiene como objetivo permitir predicciones cuantitativas precisas de las propiedades de grandes estructuras combinatorias. La teoría ha surgido en las últimas décadas como esencial tanto para el análisis de algoritmos como para el estudio de modelos científicos en muchas disciplinas, incluida la teoría de la probabilidad, la física estadística, la biología computacional y la teoría de la información.

Con una cuidadosa combinación de métodos de enumeración simbólica y análisis complejo, basándose en gran medida en funciones generadoras, surgen resultados de amplia generalidad que se pueden aplicar en particular a estructuras fundamentales como permutaciones, secuencias, cadenas, paseos, caminos, árboles, gráficos y mapas. Este relato es el tratamiento definitivo del tema. Los autores brindan una cobertura completa de las matemáticas subyacentes y un tratamiento completo de las aplicaciones clásicas y modernas de la teoría. El texto se complementa con ejercicios, ejemplos, apéndices y notas para facilitar la comprensión. El libro se puede utilizar para un curso avanzado de pregrado o posgrado, o para el autoaprendizaje.

Ver más
  • Part A. SYMBOLIC METHODS
    I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS
    I. 1. Symbolic enumeration methods
    I. 2. Admissible constructions and specifications
    I. 3. Integer compositions and partitions
    I. 4. Words and regular languages
    I. 5. Tree structures
    I. 6. Additional constructions
    I. 7. Perspective

    II. LABELLED STRUCTURES AND EXPONENTIAL GENERATING FUNCTIONS
    II. 1. Labelled classes
    II. 2. Admissible labelled constructions
    II. 3. Surjections, set partitions, and words
    II. 4. Alignments, permutations, and related structures
    II. 5. Labelled trees, mappings, and graphs
    II. 6. Additional constructions
    II. 7. Perspective

    III. COMBINATORIAL PARAMETERS AND MULTIVARIATE GENERATING FUNCTIONS
    III. 1. An introduction to bivariate generating functions (BGFs)
    III. 2. Bivariate generating functions and probability distributions
    III. 3. Inherited parameters and ordinary MGFs
    III. 4. Inherited parameters and exponential MGFs
    III. 5. Recursive parameters
    III. 6. Complete generating functions and discrete models
    III. 7. Additional constructions
    III. 8. Extremal parameters
    III. 9. Perspective

    Part B. COMPLEX ASYMPTOTICS
    IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS
    IV. 1. Generating functions as analytic objects
    IV. 2. Analytic functions and meromorphic functions
    IV. 3. Singularities and exponential growth of coefficients
    IV. 4. Closure properties and computable bounds
    IV. 5. Rational and meromorphic functions
    IV. 6. Localization of singularities
    IV. 7. Singularities and functional equations
    IV. 8. Perspective

    V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS
    V. 1. A roadmap to rational and meromorphic asymptotics
    V. 2. The supercritical sequence schema
    V. 3. Regular specifications and languages
    V. 4. Nested sequences, lattice paths, and continued fractions
    V. 5. Paths in graphs and automata
    V. 6. Transfer matrix models
    V. 7. Perspective

    VI. SINGULARITY ANALYSIS OF GENERATING FUNCTIONS
    VI. 1. A glimpse of basic singularity analysis theory
    VI. 2. Coefficient asymptotics for the standard scale
    VI. 3. Transfers
    VI. 4. The process of singularity analysis
    VI. 5. Multiple singularities
    VI. 6. Intermezzo: functions amenable to singularity analysis
    VI. 7. Inverse functions
    VI. 8. Polylogarithms
    VI. 9. Functional composition
    VI. 10. Closure properties
    VI. 11. Tauberian theory and Darboux’s method
    VI. 12. Perspective

    VII. APPLICATIONS OF SINGULARITY ANALYSIS
    VII. 1. A roadmap to singularity analysis asymptotics
    VII. 2. Sets and the exp–log schema
    VII. 3. Simple varieties of trees and inverse functions
    VII. 4. Tree-like structures and implicit functions
    VII. 5. Unlabelled non-plane trees and Polya operators
    VII. 6. Irreducible context-free structures
    VII. 7. The general analysis of algebraic functions
    VII. 8. Combinatorial applications of algebraic functions
    VII. 9. Ordinary differential equations and systems
    VII. 10. Singularity analysis and probability distributions
    VII. 11. Perspective

    VIII. SADDLE-POINT ASYMPTOTICS
    VIII. 1. Landscapes of analytic functions and saddle-points
    VIII. 2. Saddle-point bounds
    VIII. 3. Overview of the saddle-point method
    VIII. 4. Three combinatorial examples
    VIII. 5. Admissibility
    VIII. 6. Integer partitions
    VIII. 7. Saddle-points and linear differential equations.
    VIII. 8. Large powers
    VIII. 9. Saddle-points and probability distributions
    VIII. 10. Multiple saddle-points
    VIII. 11. Perspective

    Part C. RANDOM STRUCTURES
    IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS
    IX. 1. Limit laws and combinatorial structures
    IX. 2. Discrete limit laws
    IX. 3. Combinatorial instances of discrete laws
    IX. 4. Continuous limit laws
    IX. 5. Quasi-powers and Gaussian limit laws
    IX. 6. Perturbation of meromorphic asymptotics
    IX. 7. Perturbation of singularity analysis asymptotics
    IX. 8. Perturbation of saddle-point asymptotics
    IX. 9. Local limit laws
    IX. 10. Large deviations
    IX. 11. Non-Gaussian continuous limits
    IX. 12. Multivariate limit laws
    IX. 13. Perspective

    Part D. APPENDICES
    Appendix A. AUXILIARY ELEMENTARY NOTIONS
    A.1. Arithmetical functions
    A.2. Asymptotic notations
    A.3. Combinatorial probability
    A.4. Cycle construction
    A.5. Formal power series
    A.6. Lagrange inversion
    A.7. Regular languages
    A.8. Stirling numbers.
    A.9. Tree concepts

    Appendix B. BASIC COMPLEX ANALYSIS
    B.1. Algebraic elimination
    B.2. Equivalent definitions of analyticity
    B.3. Gamma function
    B.4. Holonomic functions
    B.5. Implicit Function Theorem
    B.6. Laplace’s method
    B.7. Mellin transforms
    B.8. Several complex variables

    Appendix C. CONCEPTS OF PROBABILITY THEORY
    C.1. Probability spaces and measure
    C.2. Random variables
    C.3. Transforms of distributions

    vi CONTENTS
    C.4. Special distributions
    C.5. Convergence in law

    BIBLIOGRAPHY
    INDEX 801
  • Citar Libro

Descargar Analytic Combinatorics

Tipo de Archivo
Idioma
Descargar RAR
Descargar PDF
Páginas
Tamaño
Libro
Inglés
761 pag.
11 mb

¿Qué piensas de este libro?

No hay comentarios

guest
Valorar este libro:
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x