Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals – Louis D. Quin, John A. Tyrell – 1st Edition

Descripción

Fundamentos de la ciencia e ingeniería de materiales es una versión alternativa de mi texto, Ciencia e ingeniería de materiales: una introducción, quinta edición. El contenido de ambos es el mismo, pero el orden de presentación difiere y Fundamentals utiliza tecnologías más nuevas para mejorar la enseñanza y el aprendizaje. Con respecto al orden de presentación, existen dos enfoques comunes para la enseñanza de la ciencia e ingeniería de los materiales: uno al que llamo el enfoque “tradicional” y el otro al que la mayoría se refiere como el enfoque “integrado”. Con el enfoque tradicional, primero se presentan las estructuras / características / propiedades de los metales, seguidas de una discusión análoga sobre materiales cerámicos y polímeros. Introducción, quinta edición está organizada de esta manera, que es la preferida por muchos profesores de ciencia e ingeniería de materiales. Con el enfoque integrado, se presenta una estructura, característica o propiedad particular para los tres tipos de materiales antes de pasar a la discusión de otra estructura/característica/propiedad.

Este es el orden de presentación en Fundamentos. Probablemente la crítica más común a los libros de texto universitarios es que son demasiado largos. Con los textos más populares, el número de páginas a menudo aumenta con cada nueva edición. Esto lleva a los profesores y estudiantes a quejarse de que es imposible cubrir todos los temas del texto en un solo término. Después de luchar con esta preocupación (intentar decidir qué eliminar sin limitar el valor del texto), decidimos dividir el texto en dos componentes. El primero es un conjunto de temas “básicos”: secciones del texto que se cubren con mayor frecuencia en un curso de materiales introductorios, y segundo, temas “complementarios”, secciones del texto que se tratan con menos frecuencia.

Ver más
  • LIST OF SYMBOLS
    1. Introduction
    Learning Objectives
    1.1 Historical Perspective
    1.2 Materials Science and Engineering
    1.3 Why Study Materials Science and Engineering?
    1.4 Classification of Materials
    1.5 Advanced Materials
    1.6 Modern Materials’ Needs
    References
    2. Atomic Structure and Interatomic Bonding
    Learning Objectives
    2.1 Introduction
    ATOMIC STRUCTURE
    2.2 Fundamental Concepts
    2.3 Electrons in Atoms
    2.4 The Periodic Table
    ATOMIC BONDING IN SOLIDS
    2.5 Bonding Forces and Energies
    2.6 Primary Interatomic Bonds
    2.7 Secondary Bonding or Van der Waals Bonding
    2.8 Molecules
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    3. Structures of Metals and Ceramics
    Learning Objectives
    3.1 Introduction
    CRYSTAL STRUCTURES
    3.2 Fundamental Concepts
    3.3 Unit Cells
    3.4 Metallic Crystal Structures
    3.5 Density Computations—Metals
    3.6 Ceramic Crystal Structures
    3.7 Density Computations—Ceramics
    3.8 Silicate Ceramics
    • The Silicates (CD-ROM) S-1
    3.9 Carbon
    • Fullerenes (CD-ROM) S-3
    3.10 Polymorphism and Allotropy
    3.11 Crystal Systems
    CRYSTALLOGRAPHIC DIRECTIONS AND PLANES
    3.12 Crystallographic Directions
    3.13 Crystallographic Planes
    3.14 Linear and Planar Atomic Densities
    (CD-ROM) S-4
    3.15 Close-Packed Crystal Structures
    CRYSTALLINE AND NONCRYSTALLINE MATERIALS
    3.16 Single Crystals
    3.17 Polycrystalline Materials
    3.18 Anisotropy
    3.19 X-Ray Diffraction: Determination of Crystal Structures (CD-ROM) S-6
    3.20 Noncrystalline Solids
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    4. Polymer Structures
    Learning Objectives
    4.1 Introduction
    4.2 Hydrocarbon Molecules
    4.3 Polymer Molecules
    4.4 The Chemistry of Polymer Molecules
    4.5 Molecular Weight
    4.6 Molecular Shape
    4.7 Molecular Structure
    4.8 Molecular Configurations
    (CD-ROM) S-11
    4.9 Thermoplastic and Thermosetting Polymers
    4.10 Copolymers
    4.11 Polymer Crystallinity
    4.12 Polymer Crystals
    Summary
    Important Terms and Concepts
    References
    Questions and Problems
    5. Imperfections in Solids
    Learning Objectives
    5.1 Introduction
    POINT DEFECTS
    5.2 Point Defects in Metals
    5.3 Point Defects in Ceramics
    5.4 Impurities in Solids
    5.5 Point Defects in Polymers
    5.6 Specification of Composition
    • Composition Conversions
    (CD-ROM) S-14
    MISCELLANEOUS IMPERFECTIONS
    5.7 Dislocations—Linear Defects
    5.8 Interfacial Defects
    5.9 Bulk or Volume Defects
    5.10 Atomic Vibrations
    MICROSCOPIC EXAMINATION
    5.11 General
    5.12 Microscopic Techniques (CD-ROM) S-17
    5.13 Grain Size Determination
    Summary
    Important Terms and Concepts
    References
    Questions and Problems
    6. Diffusion
    Learning Objectives
    6.1 Introduction
    6.2 Diffusion Mechanisms
    6.3 Steady-State Diffusion
    6.4 Nonsteady-State Diffusion
    6.5 Factors That Influence Diffusion
    6.6 Other Diffusion Paths
    6.7 Diffusion in Ionic and Polymeric Materials
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    7. Mechanical Properties
    Learning Objectives
    7.1 Introduction
    7.2 Concepts of Stress and Strain
    ELASTIC DEFORMATION
    7.3 Stress–Strain Behavior
    7.4 Anelasticity
    7.5 Elastic Properties of Materials
    7.6 Tensile Properties
    7.7 True Stress and Strain
    7.8 Elastic Recovery During Plastic Deformation
    7.9 Compressive, Shear, and Torsional Deformation
    MECHANICAL BEHAVIOR—CERAMICS
    7.10 Flexural Strength
    7.11 Elastic Behavior
    7.12 Influence of Porosity on the Mechanical
    Properties of Ceramics (CD-ROM) S-22
    MECHANICAL BEHAVIOR—POLYMERS
    7.13 Stress–Strain Behavior
    7.14 Macroscopic Deformation
    7.15 Viscoelasticity (CD-ROM) S-22
    HARDNESS AND OTHER MECHANICAL PROPERTY CONSIDERATIONS
    7.16 Hardness
    7.17 Hardness of Ceramic Materials
    7.18 Tear Strength and Hardness of Polymers
    PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS
    7.19 Variability of Material Properties
    Computation of Average and Standard
    Deviation Values (CD-ROM) S-28
    7.20 Design/Safety Factors
    Summary
    Important Terms and Concepts
    References
    Questions and Problems
    8. Deformation and Strengthening Mechanisms
    Learning Objectives
    8.1 Introduction
    DEFORMATION MECHANISMS FOR METALS
    8.2 Historical
    8.3 Basic Concepts of Dislocations
    8.4 Characteristics of Dislocations
    8.5 Slip Systems
    8.6 Slip in Single Crystals (CD-ROM) S-31
    8.7 Plastic Deformation of Polycrystalline Metals ¿
    8.8 Deformation by Twinning
    (CD-ROM) S-34
    MECHANISMS OF STRENGTHENING IN METALS
    8.9 Strengthening by Grain Size Reduction
    8.10 Solid-Solution Strengthening
    8.11 Strain Hardening
    RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH
    8.12 Recovery
    8.13 Recrystallization
    8.14 Grain Growth
    DEFORMATION MECHANISMS FOR CERAMIC MATERIALS
    8.15 Crystalline Ceramics
    8.16 Noncrystalline Ceramics
    MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS
    8.17 Deformation of Semicrystalline Polymers
    8.18a Factors That Influence the Mechanical Properties of Semicrystalline Polymers
    [Detailed Version (CD-ROM)] S-35
    8.18b Factors That Influence the Mechanical Properties of Semicrystalline Polymers
    (Concise Version)
    8.19 Deformation of Elastomers
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    9. Failure
    Learning Objectives
    9.1 Introduction
    FRACTURE
    9.2 Fundamentals of Fracture
    9.3 Ductile Fracture
    Fractographic Studies (CD-ROM) S-38
    9.4 Brittle Fracture
    9.5a Principles of Fracture Mechanics
    [Detailed Version (CD-ROM)] S-38
    9.5b Principles of Fracture Mechanics (Concise Version)
    9.6 Brittle Fracture of Ceramics
    Static Fatigue (CD-ROM) S-53
    9.7 Fracture of Polymers
    9.8 Impact Fracture Testing
    9.9 Cyclic Stresses
    9.10 The S–N Curve
    9.11 Fatigue in Polymeric Materials
    9.12a Crack Initiation and Propagation
    [Detailed Version (CD-ROM)] S-54
    9.12b Crack Initiation and Propagation (Concise Version)
    9.13 Crack Propagation Rate(CD-ROM) S-57
    9.14 Factors That Affect Fatigue Life
    9.15 Environmental Effects (CD-ROM) S-62 CREEP
    9.16 Generalized Creep Behavior
    9.17a Stress and Temperature Effects [Detailed Version (CD-ROM)] S-63
    9.17b Stress and Temperature Effects (ConciseCVersion)
    9.18 Data Extrapolation Methods (CD-ROM) S-65
    9.19 Alloys for High-Temperature Use
    9.20 Creep in Ceramic and Polymeric Materials
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    10 Phase Diagrams
    Learning Objectives
    10.1 Introduction
    DEFINITIONS AND BASIC CONCEPTS
    10.2 Solubility Limit
    10.3 Phases
    10.4 Microstructure
    10.5 Phase Equilibria
    EQUILIBRIUM PHASE DIAGRAMS
    10.6 Binary Isomorphous Systems
    10.7 Interpretation of Phase Diagrams
    10.8 Development of Microstructure in Isomorphous Alloys (CD-ROM) S-67
    10.9 Mechanical Properties of Isomorphous Alloys
    10.10 Binary Eutectic Systems 292
    10.11 Development of Microstructure in Eutectic Alloys (CD-ROM) S-70
    10.12 Equilibrium Diagrams Having Intermediate Phases or Compounds
    10.13 Eutectoid and Peritectic Reactions
    10.14 Congruent Phase Transformations
    10.15 Ceramic Phase Diagrams (CD-ROM) S-77
    10.16 Ternary Phase Diagrams
    10.17 The Gibbs Phase Rule (CD-ROM) S-81
    THE IRON –CARBON SYSTEM
    10.18 The Iron – Iron Carbide (Fe –Fe3C) Phase Diagram
    10.19 Development of Microstructures in Iron –Carbon Alloys
    10.20 The Influence of Other Alloying Elements (CD-ROM) S-83
    Summary
    Important Terms and Concepts
    References
    Questions and Problems
    11 Phase Transformations Learning Objectives
    11.1 Introduction
    PHASE TRANSFORMATIONS IN METALS
    11.2 Basic Concepts
    11.3 The Kinetics of Solid-State Reactions
    11.4 Multiphase Transformations
    MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON –CARBON ALLOYS
    11.5 Isothermal Transformation Diagrams
    11.6 Continuous Cooling Transformation Diagrams (CD-ROM) S-85
    11.7 Mechanical Behavior of Iron –Carbon Alloys
    11.8 Tempered Martensite
    11.9 Review of Phase Transformations for Iron –Carbon Alloys
    PRECIPITATION HARDENING
    11.10 Heat Treatments
    11.11 Mechanism of Hardening
    11.12 Miscellaneous Considerations
    CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS
    11.13 Crystallization
    11.14 Melting
    11.15 The Glass Transition
    11.16 Melting and Glass Transition Temperatures
    11.17 Factors That Influence Melting and Glass Transition Temperatures (CD-ROM) S-87
    Summary
    Important Terms and Concepts
    References
    Questions and Problems
    12. Electrical Properties
    Learning Objectives
    12.1 Introduction
    ELECTRICAL CONDUCTION
    12.2 Ohm’s Law
    12.3 Electrical Conductivity
    12.4 Electronic and Ionic Conduction
    12.5 Energy Band Structures in Solids
    12.6 Conduction in Terms of Band and Atomic Bonding Models
    12.7 Electron Mobility
    12.8 Electrical Resistivity of Metals
    12.9 Electrical Characteristics of Commercial Alloys
    SEMICONDUCTIVITY
    12.10 Intrinsic Semiconduction
    12.11 Extrinsic Semiconduction
    12.12 The Temperature Variation of Conductivity and Carrier Concentration
    12.13 The Hall Effect (CD-ROM) S-91
    12.14 Semiconductor Devices (CD-ROM) S-93
    ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS
    12.15 Conduction in Ionic Materials
    12.16 Electrical Properties of Polymers
    DIELECTRIC BEHAVIOR
    12.17 Capacitance (CD-ROM) S-99
    12.18 Field Vectors and Polarization
    (CD-ROM) S-101
    12.19 Types of Polarization (CD-ROM) S-105
    12.20 Frequency Dependence of the Dielectric Constant (CD-ROM) S-106
    12.21 Dielectric Strength (CD-ROM) S-107
    12.22 Dielectric Materials (CD-ROM) S-107
    OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS
    12.23 Ferroelectricity (CD-ROM) S-108
    12.24 Piezoelectricity (CD-ROM) S-109
    Summary
    Important Terms and Concepts
    References
    Questions and Problems

    13. Types and Applications of Materials
    Learning Objectives
    13.1 Introduction
    TYPES OF METAL ALLOYS
    13.2 Ferrous Alloys
    13.3 Nonferrous Alloys
    TYPES OF CERAMICS
    13.4 Glasses
    13.5 Glass–Ceramics
    13.6 Clay Products
    13.7 Refractories
    Fireclay, Silica, Basic, and Special
    Refractories
    (CD-ROM) S-110
    13.8 Abrasives
    13.9 Cements
    13.10 Advanced Ceramics (CD-ROM) S-111
    13.11 Diamond and Graphite
    TYPES OF POLYMERS
    13.12 Plastics
    13.13 Elastomers
    13.14 Fibers
    13.15 Miscellaneous Applications
    13.16 Advanced Polymeric Materials(CD-ROM) S-113
    Summary 434
    Important Terms and Concepts 435
    References 435
    Questions and Problems 436
    Chapters 14 through 21 discuss just supplementary topics, and are found only on the CD-ROM (and not in print)
    14. Synthesis, Fabrication, and Processing
    of Materials (CD-ROM) S-118
    Learning Objectives S-119
    14.1 Introduction S-119
    FABRICATION OF METALS S-119
    14.2 Forming Operations S-119
    14.3 Casting S-121
    14.4 Miscellaneous Techniques S-122
    THERMAL PROCESSING OF METALS S-124
    14.5 Annealing Processes S-124
    14.6 Heat Treatment of Steels S-126
    FABRICATION OF CERAMIC MATERIALS S-136
    14.7 Fabrication and Processing of Glasses S-137
    14.8 Fabrication of Clay Products S-142
    14.9 Powder Pressing S-145
    14.10 Tape Casting S-149
    SYNTHESIS AND FABRICATION OF POLYMERS
    S-149
    14.11 Polymerization S-150
    14.12 Polymer Additives S-151
    14.13 Forming Techniques for Plastics S-153
    14.14 Fabrication of Elastomers S-155
    14.15 Fabrication of Fibers and Films S-155
    Summary S-156
    Important Terms and Concepts S-157
    References S-158
    Questions and Problems S-158
    15. Composites (CD-ROM) S-162
    Learning Objectives S-163
    15.1 Introduction S-163
    PARTICLE-REINFORCED COMPOSITES S-165
    15.2 Large-Particle Composites S-165
    15.3 Dispersion-Strengthened Composites
    S-169
    FIBER-REINFORCED COMPOSITES S-170
    15.4 Influence of Fiber Length S-170
    15.5 Influence of Fiber Orientation and
    Concentration S-171
    15.6 The Fiber Phase S-180
    15.7 The Matrix Phase S-180
    15.8 Polymer–Matrix Composites S-182
    15.9 Metal–Matrix Composites S-185
    15.10 Ceramic–Matrix Composites S-186
    15.11 Carbon–Carbon Composites S-188
    15.12 Hybrid Composites S-189
    15.13 Processing of Fiber-Reinforced
    Composites S-189
    STRUCTURAL COMPOSITES S-195
    15.14 Laminar Composites S-195
    15.15 Sandwich Panels S-196
    Summary S-196
    Important Terms and Concepts S-198
    References S-198
    Questions and Problems S-199
    16. Corrosion and Degradation of
    Materials (CD-ROM) S-204
    Learning Objectives S-205
    16.1 Introduction S-205
    CORROSION OF METALS S-205
    16.2 Electrochemical Considerations S-206
    16.3 Corrosion Rates S-212
    16.4 Prediction of Corrosion Rates S-214
    16.5 Passivity S-221
    16.6 Environmental Effects S-222
    16.7 Forms of Corrosion S-223
    16.8 Corrosion Environments S-231
    16.9 Corrosion Prevention S-232
    16.10 Oxidation S-234
    CORROSION OF CERAMIC MATERIALS S-237
    DEGRADATION OF POLYMERS S-237
    16.11 Swelling and Dissolution S-238
    16.12 Bond Rupture S-238
    16.13 Weathering S-241
    Summary S-241
    Important Terms and Concepts S-242
    References S-242
    Questions and Problems S-243

    17. Thermal Properties (CD-ROM) S-247
    Learning Objectives S-248
    17.1 Introduction S-248
    17.2 Heat Capacity S-248
    17.3 Thermal Expansion S-250
    17.4 Thermal Conductivity S-253
    17.5 Thermal Stresses S-256
    Summary S-258
    Important Terms and Concepts S-259
    References S-259
    Questions and Problems S-259
    18. Magnetic Properties (CD-ROM) S-263
    Learning Objectives S-264
    18.1 Introduction S-264
    18.2 Basic Concepts S-264
    18.3 Diamagnetism and Paramagnetism S-268
    18.4 Ferromagnetism S-270
    18.5 Antiferromagnetism and
    Ferrimagnetism S-272
    18.6 The Influence of Temperature on
    Magnetic Behavior S-276
    18.7 Domains and Hysteresis S-276
    18.8 Soft Magnetic Materials S-280
    18.9 Hard Magnetic Materials S-282
    18.10 Magnetic Storage S-284
    18.11 Superconductivity S-287
    Summary S-291
    Important Terms and Concepts S-292
    References S-292
    Questions and Problems S-292
    19. Optical Properties (CD-ROM) S-297
    Learning Objectives S-298
    19.1 Introduction S-298
    BASIC CONCEPTS S-298
    19.2 Electromagnetic Radiation S-298
    19.3 Light Interactions with Solids S-300
    19.4 Atomic and Electronic Interactions S-301
    OPTICAL PROPERTIES OF METALS S-302
    OPTICAL PROPERTIES OF NONMETALS S-303
    19.5 Refraction S-303
    19.6 Reflection S-304
    19.7 Absorption S-305
    19.8 Transmission S-308
    19.9 Color S-309
    19.10 Opacity and Translucency in
    Insulators S-310
    APPLICATIONS OF OPTICAL PHENOMENA S-311
    19.11 Luminescence S-311
    19.12 Photoconductivity S-312
    19.13 Lasers S-313
    19.14 Optical Fibers in Communications S-315
    Summary S-320
    Important Terms and Concepts S-321
    References S-321
    Questions and Problems S-322

    20. Materials Selection and Design
    Considerations (CD-ROM) S-324
    Learning Objectives S-325
    20.1 Introduction S-325
    MATERIALS SELECTION FOR A TORSIONALLY
    STRESSED CYLINDRICAL SHAFT S-325
    20.2 Strength S-326
    20.3 Other Property Considerations and the
    Final Decision S-331
    AUTOMOBILE VALVE SPRING S-332
    20.4 Introduction S-332
    20.5 Automobile Valve Spring S-334
    ARTIFICIAL TOTAL HIP REPLACEMENT S-339
    20.6 Anatomy of the Hip Joint S-339
    20.7 Material Requirements S-341
    20.8 Materials Employed S-343
    THERMAL PROTECTION SYSTEM ON THE SPACE SHUTTLE ORBITER S-345
    20.9 Introduction S-345
    20.10 Thermal Protection System—Design Requirements S-345
    20.11 Thermal Protection System—Components S-347
    MATERIALS FOR INTEGRATED CIRCUIT PACKAGES S-351
    20.12 Introduction S-351
    20.13 Leadframe Design and Materials S-353
    20.14 Die Bonding S-354
    20.15 Wire Bonding S-356
    20.16 Package Encapsulation S-358
    20.17 Tape Automated Bonding S-360
    Summary S-362
    References S-363
    Questions and Problems S-364
    21. Economic, Environmental, and
    Societal Issues in Materials Science
    and Engineering (CD-ROM) S-368
    Learning Objectives S-369
    21.1 Introduction S-369
    ECONOMIC CONSIDERATIONS S-369
    21.2 Component Design S-370
    21.3 Materials S-370
    21.4 Manufacturing Techniques S-370
    ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS S-371
    21.5 Recycling Issues in Materials Science
    and Engineering S-373
    Summary S-376
    References S-376
    Appendix A The International System of Units (SI)
    Appendix B Properties of Selected
    Engineering Materials
    B.1 Density
    B.2 Modulus of Elasticity
    B.3 Poisson’s Ratio
    B.4 Strength and Ductility
    B.5 Plane Strain Fracture Toughness
    B.6 Linear Coefficient of Thermal Expansion
    B.7 Thermal Conductivity
    B.8 Specific Heat
    B.9 Electrical Resistivity
    B.10 Metal Alloy Compositions
    Appendix C Costs and Relative Costs for Selected Engineering Materials
    Appendix D Mer Structures for Common Polymers
    Appendix E Glass Transition and Melting
    Temperatures for Common Polymeric
    Materials
    Glossary
    Answers to Selected Problems
    Index
  • Citar Libro

Descargar Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals

Tipo de Archivo
Idioma
Descargar RAR
Descargar PDF
Páginas
Tamaño
Libro
Inglés
345 pag.
2 mb

Déjanos un comentario

No hay comentarios

guest
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x