Inorganic Chemistry – Catherine E. Housecroft, Alan G. Sharpe – 5th Edition

Descripción

Inorganic es un libro de texto popular, reconocido internacionalmente, que proporciona una base sólida para los estudiantes de pregrado y postgrado en los principios físicos inorgánicos, química inorgánica descriptiva, química bioinorgánica y aplicaciones de la materia en catálisis, procesos industriales y materiales.

Captar la imaginación y el interés de los estudiantes puede ser un reto, y Química Inorgánica aborda este desafío mediante el uso de recuadros bien ilustrados que relacionan los elementos y compuestos inorgánicos con la , la medicina y la industria. El éxito continuado de las ediciones anteriores de de Catherine E. Housecroft y Alan G. Sharpe, se debe en parte al amplio uso de ejemplos trabajados, ejercicios de autoaprendizaje y problemas al final del capítulo, que ayudan a los estudiantes a comprender y a aplicar los principios básicos y métodos a los problemas, muchos de los cuales utilizan datos bibliográficos.

Hace veinte años, cuando empecé a trabajar con Alan Sharpe en la primera edición de Química Inorgánica, era posible rastrear manualmente las revistas de alto impacto para descubrir los principales avances en el campo y seleccionar el material que se incluiría en el libro de texto. En 2017, esto es una tarea de enormes proporciones, y se ha vuelto imposible incorporar todos los avances significativos sin que el libro de texto crezca en tamaño más allá de los prácticos. Por tanto, he tenido que aplicar criterios bastante estrictos (y, probablemente, personales) a la hora de seleccionar nuevos compuestos y temas para incluir en la 5ª edición de Química Inorgánica.

Un acontecimiento trascendental de los últimos años ha sido la ampliación de la tabla periódica y la finalización de la (actualmente) última fila con el elemento de número atómico 118. En diciembre de 2016, la IUPAC publicó los nombres aceptados para los elementos 113 (nihonio), 115 (moscovio), 117 (tennessina) y 118 (oganeso).

Ver más
  • 1 Basic concepts: atoms

    1.1 Introduction
    Inorganic chemistry: it is not an isolated branch of chemistry
    The aims of Chapters 1 and 2

    1.2 Fundamental particles of an atom

    1.3 Atomic number, mass number and isotopes
    Nuclides, atomic number and mass number
    Relative atomic mass
    Isotopes

    1.4 Successes in early quantum theory
    Some important successes of classical quantum theory
    Bohr’s theory of the atomic spectrum of hydrogen

    1.5 An introduction to wave mechanics
    The wave-nature of electrons
    The uncertainty principle
    The Schrodinger wave equation

    1.6 Atomic orbitals
    The quantum numbers n , l and ml
    The radial part of the wavefunction, R (r )
    The radial distribution function, 4r2R(r)2
    The angular part of the wavefunction, A.; .
    Orbital energies in a hydrogen-like species
    Size of orbitals
    The spin quantum number and the magnetic spin quantum number
    The ground state of the hydrogen atom

    1.7 Many-electron atoms
    The helium atom: two electrons
    Ground state electronic configurations: experimental data
    Penetration and shielding

    1.8 The periodic table

    1.9 The aufbau principle
    Ground state electronic configurations
    Valence and core electrons
    Diagrammatic representations of electronic configurations

    1.10 Ionization energies and electron affinities
    Ionization energies
    Electron affinities

    2 Basic concepts: molecules

    2.1 Bonding models: an introduction
    A historical overview
    Lewis structures

    2.2 Homonuclear diatomic molecules: valence bond (VB) theory
    Uses of the term homonuclear
    Covalent bond distance, covalent radius and van der Waals radius
    The valence bond (VB) model of bonding in H2
    The valence bond (VB) model applied to F2 , O2 and N2

    2.3 Homonuclear diatomic molecules: molecular orbital (MO) theory
    An overview of the MO model
    Molecular orbital theory applied to the bonding in H2
    The bonding in He2; Li2 and Be2
    The bonding in F2 and O2
    What happens if the s–p separation is small?

    2.4 The octet rule and isoelectronic species
    The octet rule: first row p-block elements
    Isoelectronic species
    The octet rule: heavier p-block elements

    2.5 Electronegativity values
    Pauling electronegativity values, P
    Mulliken electronegativity values, M
    Allred–Rochow electronegativity values, AR
    Electronegativity: final remarks

    2.6 Dipole moments
    Polar diatomic molecules
    Molecular dipole moments

    2.7 MO theory: heteronuclear diatomic molecules
    Which orbital interactions should be considered?
    Hydrogen fluoride
    Carbon monoxide

    2.8 Molecular shape and the VSEPR model
    Valence-shell electron-pair repulsion model
    Structures derived from a trigonal bipyramid
    Limitations of the VSEPR model

    2.9 Molecular shape: stereoisomerism
    Square planar species
    Octahedral species
    Trigonal bipyramidal species
    High coordination numbers
    Double bonds

    3 Introduction to molecular symmetry

    3.1 Introduction

    3.2 Symmetry operations and symmetry elements
    Rotation about an n-fold axis of symmetry
    Reflection through a plane of symmetry (mirror plane)
    Reflection through a centre of symmetry (inversion centre)
    Rotation about an axis, followed by reflection through a plane perpendicular to this axis
    Identity operator

    3.3 Successive operations

    3.4 Point groups
    C1 point group
    C1v point group
    D1h point group
    Td, Oh or Ih point groups
    Determining the point group of a molecule or molecular ion

    3.5 Character tables: an introduction

    3.6 Why do we need to recognize symmetry elements?

    3.7 Vibrational spectroscopy
    How many vibrational modes are there for a given molecular species?
    Selection rules for an infrared or Raman active mode of vibration
    Linear (D1h or C1v ) and bent (C2v ) triatomic molecules
    Bent molecules XY2 : using the C2v character table
    XY3 molecules with D3h symmetry
    XY3 molecules with C3v symmetry
    XY4 molecules with Td or D4h symmetry
    XY6 molecules with Oh symmetry
    Metal carbonyl complexes, M(CO)n
    Metal carbonyl complexes M(CO)6n Xn
    Observing IR spectroscopic absorptions

    3.8 Chiral molecules

    4 Experimental techniques

    4.1 Introduction

    4.2 Separation and purification techniques
    Gas chromatography (GC)
    Liquid chromatography (LC)
    High-performance liquid chromatography (HPLC)
    Recrystallization

    4.3 Elemental analysis
    CHN analysis by combustion
    Atomic absorption spectroscopy (AAS)

    4.4 Compositional analysis: thermogravimetry (TG)

    4.5 Mass spectrometry
    Electron ionization (EI)
    Fast atom bombardment (FAB)
    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)
    Electrospray ionization (ESI)

    4.6 Infrared and Raman spectroscopies
    Energies and wavenumbers of molecular vibrations
    The Fourier transform infrared (FT-IR) spectrometer and sample preparation
    Diagnostic absorptions
    Deuterium/hydrogen exchange
    Raman spectroscopy

    4.7 Electronic spectroscopy
    UV-VIS absorption spectroscopy
    Types of absorption
    Absorbance and the Beer–Lambert Law
    Emission spectroscopy

    4.8 Nuclear magnetic resonance (NMR) spectroscopy
    NMR active nuclei and isotope abundance
    Which nuclei are suitable for NMR spectroscopic studies?
    Resonance frequencies and chemical shifts
    Chemical shift ranges
    Solvents for solution studies
    Integration of signals and signal broadening
    Homonuclear spin–spin coupling: 1 H–1 H
    Heteronuclear spin–spin coupling: 13 C–1 H
    Case studies
    Stereochemically non-rigid species
    Exchange processes in solution

    4.9 Electron paramagnetic resonance (EPR) spectroscopy
    What is EPR spectroscopy?
    The Zeeman electronic effect
    EPR spectra

    4.10 Mo¨ssbauer spectroscopy
    The technique of MoÅN ssbauer spectroscopy
    What can isomer shift data tell us?

    4.11 Structure determination: diffraction methods
    X-ray diffraction (XRD)
    Single crystal X-ray diffraction
    Powder X-ray diffraction
    Single crystal neutron diffraction
    Electron diffraction
    Low-energy electron diffraction (LEED)
    Structural databases

    4.12 Photoelectron spectroscopy (PES, UPS, XPS, ESCA)

    4.13 Computational methods
    Hartree–Fock theory
    Density functional theory
    Hu¨ckel MO theory
    Molecular mechanics (MM)

    5 Bonding in polyatomic molecules

    5.1 Introduction

    5.2 Valence bond theory: hybridization of atomic orbitals
    What is orbital hybridization?
    sp Hybridization: a scheme for linear species
    sp2 Hybridization: a scheme for trigonal planar species
    sp3 Hybridization: a scheme for tetrahedral and related species
    Other hybridization schemes

    5.3 Valence bond theory: multiple bonding in polyatomic molecules
    C2 H4
    HCN
    BF3

    5.4 Natural bond orbitals

    5.5 Molecular orbital theory: the ligand group orbital approach and
    Molecular orbital diagrams: moving from a diatomic to polyatomic species
    MO approach to bonding in linear XH2 : symmetry matching by inspection
    MO approach to bonding in linear XH2 : working from molecular symmetry
    A bent triatomic: H2 O

    5.6 Molecular orbital theory applied to the polyatomic molecules BH3 , NH3 and CH4
    A comparison of the MO and VB bonding models

    5.7 Molecular orbital theory: bonding analyses soon become complicated

    5.8 Molecular orbital theory: learning to use the theory objectively -Bonding in CO2
    p-Bonding in CO2
    Three-centre two-electron interactions
    A more advanced problem: B2 H6

    6 Structures and energetics of metallic and ionic solids

    6.1 Introduction

    6.2 Packing of spheres
    Cubic and hexagonal close-packing
    The unit cell: hexagonal and cubic close-packing
    Interstitial holes: hexagonal and cubic close-packing
    Non-close-packing: simple cubic and body-centred cubic arrays

    6.3 The packing-of-spheres model applied to the structures of elements
    Group 18 elements in the solid state
    H2 and F2 in the solid state
    Metallic elements in the solid state

    6.4 Polymorphism in metals
    Polymorphism: phase changes in the solid state
    Phase diagrams

    6.5 Metallic radii

    6.6 Melting points and standard enthalpies of atomization of metals

    6.7 Alloys and intermetallic compounds
    Substitutional alloys
    Interstitial alloys
    Intermetallic compounds

    6.8 Bonding in metals and semiconductors
    Electrical conductivity and resistivity
    Band theory of metals and insulators
    The Fermi level

    6.9 Semiconductors
    Intrinsic semiconductors
    Extrinsic (n- and p-type) semiconductors

    6.10 Sizes of ions
    Ionic radii
    Periodic trends in ionic radii

    6.11 Ionic lattices
    The rock salt (NaCl) structure type
    The caesium chloride (CsCl) structure type
    The fluorite (CaF2) structure type
    The antifluorite structure type
    The zinc blende (ZnS) structure type: a diamond-type network
    The b -cristobalite (SiO2) structure type
    The wurtzite (ZnS) structure type
    The rutile (TiO2) structure type
    CdI2 and CdCl2 : layer structures
    The perovskite (CaTiO3) structure type: a double oxide

    6.12 Crystal structures of semiconductors

    6.13 Lattice energy: estimates from an electrostatic model
    Coulombic attraction within an isolated ion-pair
    Coulombic interactions in an ionic lattice
    Born forces
    The Born–LandeÅL equation
    Madelung constants
    Refinements to the Born–LandeÅL equation
    Overview

    6.14 Lattice energy: the Born–Haber cycle

    6.15 Lattice energy: ‘calculated’ versus ‘experimental’ values

    6.16 Estimating lattice energies of new materials
    The Kapustinskii equation
    The volume-based thermodynamic (VBT) approach

    6.17 Applications of lattice energies
    Estimation of electron affinities
    Fluoride affinities
    Estimation of standard enthalpies of formation and disproportionation

    6.18 Defects in solid state lattices
    Schottky defect
    Frenkel defect
    Experimental observation of Schottky and Frenkel defects
    Non-stoichiometric compounds
    Colour centres (F-centres)
    Thermodynamic effects of crystal defects

    7 Acids, bases and ions in aqueous solution

    7.1 Introduction

    7.2 Properties of water
    Structure and hydrogen bonding
    The self-ionization of water
    Water as a Bronsted acid or base

    7.3 Definitions and units in aqueous solution
    Molarity and molality
    Standard state
    Activity

    7.4 Some Brønsted acids and bases
    Carboxylic acids: examples of mono-, di- and polybasic acids
    Inorganic acids
    Inorganic bases: hydroxides
    Inorganic bases: nitrogen bases

    7.5 The energetics of acid dissociation in aqueous solution
    Hydrogen halides
    H2 S; H2 Se and H2 Te

    7.6 Trends within a series of oxoacids EOn (OH)m

    7.7 Aquated cations: formation and acidic properties
    Water as a Lewis base
    Aquated cations as Bronsted acids

    7.8 Amphoteric oxides and hydroxides
    Amphoteric behaviour
    Periodic trends in amphoteric properties

    7.9 Solubilities of ionic salts
    Solubility and saturated solutions
    Sparingly soluble salts and solubility products
    The energetics of the dissolution of an ionic salt: solG
    The energetics of the dissolution of an ionic salt: hydration of ions
    Solubilities: some concluding remarks

    7.10 Common-ion effect

    7.11 Coordination complexes: an introduction
    Definitions and terminology
    Investigating coordination complex formation

    7.12 Stability constants of coordination complexes
    Determination of stability constants
    Trends in stepwise stability constants
    Thermodynamic considerations of complex formation: an introduction

    7.13 Factors affecting the stabilities of complexes containing only monodentate ligands
    Ionic size and charge
    Hard and soft metal centres and ligands

    8 Reduction and oxidation

    8.1 Introduction
    Oxidation and reduction
    Oxidation states
    Stock nomenclature

    8.2 Standard reduction potentials, Eo , and relationships between Eo ,Go and K
    Half-cells and galvanic cells
    Defining and using standard reduction potentials, E
    Dependence of reduction potentials on cell conditions

    8.3 The effect of complex formation or precipitation on Mz+/M reduction potentials
    Half-cells involving silver halides
    Modifying the relative stabilities of different oxidation states of a metal

    8.4 Disproportionation reactions
    Disproportionation
    Stabilizing species against disproportionation

    8.5 Potential diagrams

    8.6 Frost–Ebsworth diagrams
    Frost–Ebsworth diagrams and their relationship to potential diagrams
    Interpretation of Frost–Ebsworth diagrams

    8.7 The relationships between standard reduction potentials and some other quantities
    Factors influencing the magnitudes of standard reduction potentials
    Values of fG for aqueous ions

    8.8 Applications of redox reactions to the extraction of elements from their ores
    Ellingham diagrams

    9 Non-aqueous media

    9.1 Introduction

    9.2 Relative permittivity

    9.3 Energetics of ionic salt transfer from water to an organic solvent

    9.4 Acid–base behaviour in non-aqueous solvents
    Strengths of acids and bases
    Levelling and differentiating effects
    ‘Acids’ in acidic solvents
    Acids and bases: a solvent-oriented definition
    Proton-containing and aprotic solvents

    9.5 Liquid sulfur dioxide

    9.6 Liquid ammonia
    Physical properties
    Self-ionization
    Reactions in liquid NH3
    Solutions of s-block metals in liquid NH3
    Redox reactions in liquid NH3

    9.7 Liquid hydrogen fluoride
    Physical properties
    Acid–base behaviour in liquid HF
    Electrolysis in liquid HF

    9.8 Sulfuric acid and fluorosulfonic acid
    Physical properties of sulfuric acid
    Acid–base behaviour in liquid H2 SO4
    Physical properties of fluorosulfonic acid

    9.9 Superacids

    9.10 Bromine trifluoride
    Physical properties
    Behaviour of fluoride salts and molecular fluorides in BrF3
    Reactions in BrF3

    9.11 Dinitrogen tetraoxide
    Physical properties
    Reactions in N2 O4

    9.12 Ionic liquids
    Molten salt solvent systems
    Ionic liquids at ambient temperatures

    9.13 Supercritical fluids
    Properties of supercritical fluids and their uses as solvents
    Supercritical fluids as media for inorganic chemistry

    10 Hydrogen

    10.1 Hydrogen: the simplest atom

    10.2 The H. and H ions
    The hydrogen ion (proton)
    The hydride ion

    10.3 Isotopes of hydrogen
    Protium and deuterium
    Kinetic isotope effects
    Deuterated compounds
    Tritium

    10.4 Dihydrogen
    Occurrence
    Physical properties
    Synthesis and uses
    Reactivity

    10.5 Polar and non-polar E–H bonds

    10.6 Hydrogen bonding
    The hydrogen bond
    Trends in boiling points, melting points and enthalpies of vaporization for p -block binary hydrides
    Infrared spectroscopy
    Solid state structures
    Hydrogen bonding in biological systems

    10.7 Binary hydrides: classification and general properties
    Classification
    Metallic hydrides
    Saline hydrides
    Molecular hydrides and complexes derived from them
    Covalent hydrides with extended structures

    11 Group 1: the alkali metals

    11.1 Introduction

    11.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Major uses of the alkali metals and their compounds

    11.3 Physical properties
    General properties
    Atomic spectra and flame tests
    Radioactive isotopes
    NMR active nuclei

    11.4 The metals
    Appearance
    Reactivity

    11.5 Halides

    11.6 Oxides and hydroxides
    Oxides, peroxides, superoxides, suboxides and ozonides
    Hydroxides

    11.7 Salts of oxoacids: carbonates and hydrogencarbonates

    11.8 Aqueous solution chemistry and macrocyclic complexes
    Hydrated ions
    Complex ions

    11.9 Non-aqueous coordination chemistry

    12 The group 2 metals

    12.1 Introduction

    12.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Major uses of the group 2 metals and their compounds

    12.3 Physical properties
    General properties
    Flame tests
    Radioactive isotopes

    12.4 The metals
    Appearance
    Reactivity

    12.5 Halides
    Beryllium halides
    Halides of Mg, Ca, Sr and Ba

    12.6 Oxides and hydroxides
    Oxides and peroxides
    Hydroxides

    12.7 Salts of oxoacids

    12.8 Complex ions in aqueous solution
    Aqua species of beryllium
    Aqua species of Mg2+, Ca2+, Sr2+ and Ba2+
    Complexes with ligands other than water

    12.9 Complexes with amido or alkoxy ligands

    12.10 Diagonal relationships between Li and Mg, and between Be and Al
    Lithium and magnesium
    Beryllium and aluminium

    13 The group 13 elements

    13.1 Introduction

    13.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Major uses of the group 13 elements and their compounds

    13.3 Physical properties
    Electronic configurations and oxidation states
    NMR active nuclei

    13.4 The elements
    Appearance
    Structures of the elements
    Reactivity

    13.5 Simple hydrides
    Neutral hydrides
    The [MH4]- ions

    13.6 Halides and complex halides
    Boron halides: BX3 and B2 X4
    Al(III), Ga(III), In(III) and Tl(III) halides and their complexes
    Lower oxidation state Al, Ga, In and Tl halides

    13.7 Oxides, oxoacids, oxoanions and hydroxides
    Boron oxides, oxoacids and oxoanions
    Aluminium oxides, oxoacids, oxoanions and hydroxides
    Oxides of Ga, In and Tl

    13.8 Compounds containing nitrogen
    Nitrides
    Ternary boron nitrides
    Molecular species containing B–N or B–P bonds
    Molecular species containing group 13 metal–nitrogen bonds

    13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry and complexes
    Aluminium sulfate and alums
    Aqua ions
    Redox reactions in aqueous solution
    Coordination complexes of the M3+ ions

    13.10 Metal borides

    13.11 Electron-deficient borane and carbaborane clusters: an introduction

    14 The group 14 elements

    14.1 Introduction

    14.2 Occurrence, extraction and uses
    Occurrence
    Extraction and manufacture
    Uses

    14.3 Physical properties
    Ionization energies and cation formation
    Some energetic and bonding considerations
    NMR active nuclei
    Mossbauer spectroscopy

    14.4 Allotropes of carbon
    Graphite and diamond: structure and properties
    Graphite: intercalation compounds
    Fullerenes: synthesis and structure
    Fullerenes: reactivity
    Carbon nanotubes

    14.5 Structural and chemical properties of silicon, germanium, tin and lead
    Structures
    Chemical properties

    14.6 Hydrides
    Binary hydrides
    Halohydrides of silicon and germanium

    14.7 Carbides, silicides, germides, stannides and plumbides
    Carbides
    Silicides
    Zintl ions containing Si, Ge, Sn and Pb

    14.8 Halides and complex halides
    Carbon halides
    Silicon halides
    Halides of germanium, tin and lead

    14.9 Oxides, oxoacids and hydroxides
    Oxides and oxoacids of carbon
    Silica, silicates and aluminosilicates
    Oxides, hydroxides and oxoacids of germanium, tin and lead

    14.10 Siloxanes and polysiloxanes (silicones)

    14.11 Sulfides

    14.12 Cyanogen, silicon nitride and tin nitride
    Cyanogen and its derivatives
    Silicon nitride
    Tin(IV) nitride

    14.13 Aqueous solution chemistry and salts of oxoacids of germanium, tin and lead

    15 The group 15 elements

    15.1 Introduction

    15.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Uses

    15.3 Physical properties
    Bonding considerations
    NMR active nuclei
    Radioactive isotopes

    15.4 The elements
    Nitrogen
    Phosphorus
    Arsenic, antimony and bismuth

    15.5 Hydrides
    Trihydrides, EH3 (E. N, P, As, Sb and Bi)
    Hydrides E2 H4 (E. N, P, As)
    Chloramine and hydroxylamine
    Hydrogen azide and azide salts

    15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides
    Nitrides
    Phosphides
    Arsenides, antimonides and bismuthides

    15.7 Halides, oxohalides and complex halides
    Nitrogen halides
    Oxofluorides and oxochlorides of nitrogen
    Phosphorus halides
    Phosphoryl trichloride, POCl3
    Arsenic and antimony halides
    Bismuth halides

    15.8 Oxides of nitrogen
    Dinitrogen monoxide, N2O
    Nitrogen monoxide, NO
    Dinitrogen trioxide, N2O3
    Dinitrogen tetraoxide, N2 O4 , and nitrogen dioxide, NO2
    Dinitrogen pentaoxide, N2O5

    15.9 Oxoacids of nitrogen
    Isomers of H2 N2 O2
    Nitrous acid, HNO2
    Nitric acid, HNO3 , and its derivatives

    15.10 Oxides of phosphorus, arsenic, antimony and bismuth
    Oxides of phosphorus
    Oxides of arsenic, antimony and bismuth

    15.11 Oxoacids of phosphorus
    Phosphinic acid, H3 PO2
    Phosphonic acid, H3 PO3
    Hypodiphosphoric acid, H4 P2 O6
    Phosphoric acid, H3 PO4 , and its derivatives
    Chiral phosphate anions

    15.12 Oxoacids of arsenic, antimony and bismuth

    15.13 Phosphazenes

    15.14 Sulfides and selenides
    Sulfides and selenides of phosphorus
    Arsenic, antimony and bismuth sulfides

    15.15 Aqueous solution chemistry and complexes

    16 The group 16 elements

    16.1 Introduction

    16.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Uses

    16.3 Physical properties and bonding considerations
    NMR active nuclei and isotopes as tracers

    16.4 The elements
    Dioxygen
    Ozone
    Sulfur: allotropes
    Sulfur: reactivity
    Selenium and tellurium

    16.5 Hydrides
    Water, H2O
    Hydrogen peroxide, H2O2
    Hydrides H2E (E = S, Se, Te)
    Polysulfanes

    16.6 Metal sulfides, polysulfides, polyselenides and polytellurides
    Sulfides
    Polysulfides
    Polyselenides and polytellurides

    16.7 Halides, oxohalides and complex halides
    Oxygen fluorides
    Sulfur fluorides and oxofluorides
    Sulfur chlorides and oxochlorides
    Halides of selenium and tellurium

    16.8 Oxides
    Oxides of sulfur
    Oxides of selenium and tellurium

    16.9 Oxoacids and their salts
    Dithionous acid, H2S2O4
    Sulfurous and disulfurous acids, H2SO3 and H2S2O5
    Dithionic acid, H2S2O6
    Sulfuric acid, H2SO4
    Fluoro- and chlorosulfonic acids, HSO3F and HSO3 Cl
    Polyoxoacids with S–O–S units
    Peroxysulfuric acids, H2S2O8 and H2SO5
    Thiosulfuric acid, H2S2O3, and polythionates
    Oxoacids of selenium and tellurium

    16.10 Compounds of sulfur and selenium with nitrogen
    Sulfur–nitrogen compounds
    Tetraselenium tetranitride

    16.11 Aqueous solution chemistry of sulfur, selenium and tellurium

    17 The group 17 elements

    17.1 Introduction
    Fluorine, chlorine, bromine and iodine
    Astatine and tennessine

    17.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Uses

    17.3 Physical properties and bonding considerations
    NMR active nuclei and isotopes as tracers

    17.4 The elements
    Difluorine
    Dichlorine, dibromine and diiodine
    Charge transfer complexes
    Clathrates

    17.5 Hydrogen halides

    17.6 Metal halides: structures and energetics

    17.7 Interhalogen compounds and polyhalogen ions
    Interhalogen compounds
    Bonding in . [XY2]- ions
    Polyhalogen cations
    Polyhalide anions

    17.8 Oxides and oxofluorides of chlorine, bromine and iodine
    Oxides
    Oxofluorides

    17.9 Oxoacids and their salts
    Hypofluorous acid, HOF
    Oxoacids of chlorine, bromine and iodine

    17.10 Aqueous solution chemist

    18 The group 18 elements

    18.1 Introduction

    18.2 Occurrence, extraction and uses
    Occurrence
    Extraction
    Uses

    18.3 Physical properties
    NMR active nuclei

    18.4 Compounds of xenon
    Fluorides
    Chlorides
    Oxides
    Oxofluorides and oxochlorides
    Other compounds of xenon

    18.5 Compounds of argon, krypton and radon

    19 d-Block metal chemistry: general considerations

    19.1 Topic overview

    19.2 Ground state electronic configurations
    d-Block metals versus transition elements
    Electronic configurations

    19.3 Physical properties

    19.4 The reactivity of the metals

    19.5 Characteristic properties: a general perspective
    Colour
    Paramagnetism
    Complex formation
    Variable oxidation states

    19.6 Electroneutrality principle

    19.7 Coordination numbers and geometries
    The Kepert model
    Coordination numbers in the solid state
    Coordination number 2
    Coordination number 3
    Coordination number 4
    Coordination number 5
    Coordination number 6
    Coordination number 7
    Coordination number 8
    Coordination number 9
    Coordination numbers of 10 and above

    19.8 Isomerism in d -block metal complexes
    Structural isomerism: ionization isomers
    Structural isomerism: hydration isomers
    Structural isomerism: coordination isomerism
    Structural isomerism: linkage isomerism
    Stereoisomerism: diastereoisomers
    Stereoisomerism: enantiomers

    20 d-Block metal chemistry: coordination complexes

    20.1 Introduction
    High- and low-spin states

    20.2 Bonding in d -block metal complexes: valence bond theory
    Hybridization schemes

    20.3 Crystal field theory
    The octahedral crystal field
    Crystal field stabilization energy: high- and low-spin octahedral complexes
    Jahn–Teller distortions
    The tetrahedral crystal field
    The square planar crystal field
    Other crystal fields
    Crystal field theory: uses and limitations

    20.4 Molecular orbital theory: octahedral complexes
    Complexes with no metal–ligand  -bonding
    Complexes with metal–ligand  -bonding

    20.5 Ligand field theory

    20.6 Describing electrons in multi-electron systems
    Quantum numbers L and ML for multi-electron species
    Quantum numbers S and MS for multi-electron species
    Microstates and term symbols
    The quantum numbers J and MJ
    Ground states of elements with Z=1-10
    The d2 configuration

    20.7 Electronic spectra: absorption
    Spectral features
    Charge transfer absorptions
    Selection rules
    Electronic absorption spectra of octahedral and tetrahedral complexes
    Interpretation of electronic absorption spectra: use of Racah parameters
    Interpretation of electronic absorption spectra: Tanabe–Sugano diagrams

    20.8 Electronic spectra: emission

    20.9 Evidence for metal–ligand covalent bonding
    The nephelauxetic effect
    EPR spectroscopy

    20.10 Magnetic properties
    Magnetic susceptibility and the spin-only formula
    Spin and orbital contributions to the magnetic moment
    The effects of temperature on eff
    Spin crossover
    Ferromagnetism, antiferromagnetism and ferrimagnetism

    20.11 Thermodynamic aspects: ligand field stabilization energies (LFSE)
    Trends in LFSE
    Lattice energies and hydration energies of Mn+ ions
    Octahedral versus tetrahedral coordination: spinels

    20.12 Thermodynamic aspects: the Irving–Williams series

    20.13 Thermodynamic aspects: oxidation states in aqueous solution

    21 d-Block metal chemistry: the first row metals

    21.1 Introduction

    21.2 Occurrence, extraction and uses

    21.3 Physical properties: an overview

    21.4 Group 3: scandium
    The metal
    Scandium(III)

    21.5 Group 4: titanium
    The metal
    Titanium(IV)
    Titanium(III)
    Low oxidation states

    21.6 Group 5: vanadium
    The metal
    Vanadium(V)
    Vanadium(IV)
    Vanadium(III)
    Vanadium(II)

    21.7 Group 6: chromium
    The metal
    Chromium(VI)
    Chromium(V) and chromium(IV)
    Chromium(III)
    Chromium(II)
    Chromium–chromium multiple bonds

    21.8 Group 7: manganese
    The metal
    Manganese(VII)
    Manganese(VI)
    Manganese(V)
    Manganese(IV)
    Manganese(III)
    Manganese(II)
    Manganese(I)

    21.9 Group 8: iron
    The metal
    Iron(VI), iron(V) and iron(IV)
    Iron(III)
    Iron(II)
    Iron in low oxidation states

    21.10 Group 9: cobalt
    The metal
    Cobalt(IV)
    Cobalt(III)
    Cobalt(II)

    21.11 Group 10: nickel
    The metal
    Nickel(IV) and nickel(III
    Nickel(II)
    Nickel(I)

    21.12 Group 11: copper
    The metal
    Copper(IV) and copper(III)
    Copper(II)
    Copper(I)

    21.13 Group 12: zinc
    The metal
    Zinc(II)
    Zinc(I)

    22 d-Block metal chemistry: the heavier metals

    22.1 Introduction

    22.2 Occurrence, extraction and uses

    22.3 Physical properties
    Effects of the lanthanoid contraction
    Coordination numbers
    NMR active nuclei

    22.4 Group 3: yttrium
    The metal
    Yttrium(III)

    22.5 Group 4: zirconium and hafnium
    The metals
    Zirconium(IV) and hafnium(IV)
    Lower oxidation states of zirconium and hafnium
    Zirconium clusters

    22.6 Group 5: niobium and tantalum
    The metals
    Niobium(V) and tantalum(V)
    Niobium(IV) and tantalum(IV)
    Lower oxidation state halides

    22.7 Group 6: molybdenum and tungsten
    The metals
    Molybdenum(VI) and tungsten(VI)
    Molybdenum(V) and tungsten(V)
    Molybdenum(IV) and tungsten(IV)
    Molybdenum(III) and tungsten(III)
    Molybdenum(II) and tungsten(II)

    22.8 Group 7: technetium and rhenium
    The metals
    High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V)
    Technetium(IV) and rhenium(IV)
    Technetium(III) and rhenium(III)
    Technetium(I) and rhenium(I)

    22.9 Group 8: ruthenium and osmium
    The metals
    High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI)
    Ruthenium(V), (IV) and osmium(V), (IV)
    Ruthenium(III) and osmium(III)
    Ruthenium(II) and osmium(II)
    Mixed-valence ruthenium complexes

    22.10 Group 9: rhodium and iridium
    The metals
    High oxidation states of rhodium and iridium: M(VI) and M(V)
    Rhodium(IV) and iridium(IV)
    Rhodium(III) and iridium(III)
    Rhodium(II) and iridium(II)
    Rhodium(I) and iridium(I)

    22.11 Group 10: palladium and platinum
    The metals
    The highest oxidation states: M(VI) and M(V)
    Palladium(IV) and platinum(IV)
    Palladium(III), platinum(III) and mixed-valence complexes
    Palladium(II) and platinum(II)
    Platinum(–II)

    22.12 Group 11: silver and gold
    The metals
    Gold(V) and silver(V)
    Gold(III) and silver(III)
    Gold(II) and silver(II)
    Gold(I) and silver(I)
    Gold(–I) and silver(–I)

    22.13 Group 12: cadmium and mercury
    The metals
    Cadmium(II)
    Mercury(II)
    Mercury(I)

    23 Organometallic compounds of s- and p-block elements

    23.1 Introduction

    23.2 Group 1: alkali metal organometallics

    23.3 Group 2 organometallics
    Beryllium
    Magnesium
    Calcium, strontium and barium

    23.4 Group 13
    Boron
    Aluminium
    Gallium, indium and thallium

    23.5 Group 14
    Silicon
    Germanium
    Tin
    Lead
    Coparallel and tilted C5 -rings in group 14 metallocenes

    23.6 Group 15
    Bonding aspects and E=E bond formation
    Arsenic, antimony and bismuth

    23.7 Group 16
    Selenium and tellurium

    24 Organometallic compounds of d-block elements

    24.1 Introduction

    24.2 Common types of ligand: bonding and spectroscopy
    -Bonded alkyl, aryl and related ligands
    Carbonyl ligands
    Hydride ligands
    Phosphane and related ligands
    -Bonded organic ligands
    Nitrogen monoxide
    Dinitrogen
    Dihydrogen

    24.3 The 18-electron rule

    24.4 Covalent bond classification (CBC)

    24.5 Metal carbonyls: synthesis, physical properties and structure
    Synthesis and physical properties
    Structures

    24.6 The isolobal principle and application of Wade’s rules

    24.7 Total valence electron counts in d-block organometallic clusters
    Single cage structures
    Condensed cages
    Limitations of total valence counting schemes

    24.8 Types of organometallic reactions
    Substitution of CO ligands
    Oxidative addition
    Alkyl and hydrogen migrations
    b-Hydrogen elimination
    a-Hydrogen abstraction
    Summary

    24.9 Metal carbonyls: selected reactions

    24.10 Metal carbonyl hydrides and halides

    24.11 Alkyl, aryl, alkene and alkyne complexes
    -Bonded alkyl and aryl ligands
    Alkene ligands
    Alkyne ligands

    24.12 Allyl and buta-1,3-diene complexes
    Allyl and related ligands
    Buta-1,3-diene and related ligands

    24.13 Carbene and carbyne complexes

    24.14 Complexes containing Z5 -cyclopentadienyl ligands
    Ferrocene and other metallocenes
    (Z5-Cp)2Fe2(CO)4 and derivatives

    24.15 Complexes containing Z6- and Z7-ligands
    Z6-Arene ligands
    Cycloheptatriene and derived ligands

    24.16 Complexes containing the Z4-cyclobutadiene ligand

    25 Catalysis and some industrial processes

    25.1 Introduction and definitions

    25.2 Catalysis: introductory concepts
    Energy profiles for a reaction: catalysed versus non-catalysed
    Catalytic cycles
    Choosing a catalyst

    25.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis

    25.4 Homogeneous catalytic reduction of N2 to NH3

    25.5 Homogeneous catalysis: industrial applications
    Alkene hydrogenation
    Monsanto and Cativa acetic acid syntheses
    Tennessee–Eastman acetic anhydride process
    Hydroformylation (Oxo-process)
    Alkene oligomerization

    25.6 Homogeneous catalyst development
    Polymer-supported catalysts
    Biphasic catalysis

    25.7 Heterogeneous catalysis: surfaces and interactions with adsorbates

    25.8 Heterogeneous catalysis: commercial applications
    Alkene polymerization: Ziegler–Natta catalysis and metallocene catalysts
    Fischer–Tropsch carbon chain growth
    Haber–Bosch process
    Production of SO3 in the Contact process
    Catalytic converters
    Zeolites as catalysts for organic transformations: uses of ZSM-5

    25.9 Heterogeneous catalysis: organometallic cluster models

    26 d-Block metal complexes: reaction mechanisms

    26.1 Introduction

    26.2 Ligand substitutions: some general points
    Kinetically inert and labile complexes
    Stoichiometric equations say nothing about mechanism
    Types of substitution mechanism
    Activation parameters

    26.3 Substitution in square planar complexes
    Rate equations, mechanism and the trans-effect
    Ligand nucleophilicity

    26.4 Substitution and racemization in octahedral complexes
    Water exchange
    The Eigen–Wilkins mechanism
    Stereochemistry of substitution
    Base-catalysed hydrolysis
    Isomerization and racemization of octahedral complexes

    26.5 Electron-transfer processes
    Inner-sphere mechanism
    Outer-sphere mechanism

    27 The f-block metals: lanthanoids and actinoids

    27.1 Introduction

    27.2 f-Orbitals and oxidation states

    27.3 Atom and ion sizes
    The lanthanoid contraction
    Coordination numbers

    27.4 Spectroscopic and magnetic properties
    Electronic spectra and magnetic moments: lanthanoids
    Luminescence of lanthanoid complexes
    Electronic spectra and magnetic moments: actinoids

    27.5 Sources of the lanthanoids and actinoids
    Occurrence and separation of the lanthanoids
    The actinoids

    27.6 Lanthanoid metals

    27.7 Inorganic compounds and coordination complexes of the lanthanoids
    Halides
    Hydroxides and oxides
    Complexes of Ln(III)

    27.8 Organometallic complexes of the lanthanoids
    -Bonded complexes
    Cyclopentadienyl complexes
    Bis(arene) derivatives
    Complexes containing the Z8-cyclooctatetraenyl ligand

    27.9 The actinoid metals

    27.10 Inorganic compounds and coordination complexes of thorium, uranium and plutonium
    Thorium
    Uranium
    Plutonium

    27.11 Organometallic complexes of thorium and uranium
    -Bonded complexes
    Cyclopentadienyl derivatives
    Complexes containing the Z8-cyclooctatetraenyl ligand

    28 Inorganic materials and nanotechnology

    28.1 Introduction

    28.2 Electrical conductivity in ionic solids
    Sodium and lithium ion conductors
    d-Block metal(II) oxides

    28.3 Transparent conducting oxides and their applications in devices
    Sn-doped In2O3 (ITO) and F-doped SnO2 (FTO)
    Dye-sensitized solar cells (DSCs)
    Solid state lighting: OLEDs
    Solid state lighting: LECs

    28.4 Superconductivity
    Superconductors: early examples and basic theory
    High-temperature superconductors
    Iron-based superconductors
    Chevrel phases
    Superconducting properties of MgB2
    Applications of superconductors

    28.5 Ceramic materials: colour pigments
    White pigments (opacifiers)
    Adding colour

    28.6 Chemical vapour deposition (CVD)
    High-purity silicon for semiconductors
    a-Boron nitride
    Silicon nitride and carbide
    III–V Semiconductors
    Metal deposition
    Ceramic coatings
    Perovskites and cuprate superconductors

    28.7 Inorganic fibres
    Boron fibres
    Carbon fibres
    Silicon carbide fibres
    Alumina fibres

    28.8 Graphene

    28.9 Carbon nanotubes

    29 The trace metals of life

    29.1 Introduction
    Amino acids, peptides and proteins: some terminology

    29.2 Metal storage and transport: Fe, Cu, Zn and V
    Iron storage and transport
    Metallothioneins: transporting some toxic metals

    29.3 Dealing with O2
    Haemoglobin and myoglobin
    Haemocyanin
    Haemerythrin
    Cytochromes P-450

    29.4 Biological redox processes
    Blue copper proteins
    The mitochondrial electron-transfer chain
    Iron–sulfur proteins
    Cytochromes

    29.5 The Zn2+ ion: Nature’s Lewis acid
    Carbonic anhydrase II
    Carboxypeptidase A
    Carboxypeptidase G2
    Cobalt-for-zinc ion substitution

    Appendices

    1 Greek letters with pronunciations
    2 Abbreviations and symbols for quantities and units
    3 Selected character tables
    4 The electromagnetic spectrum
    5 Naturally occurring isotopes and their abundances
    6 Van der Waals, metallic, covalent and ionic radii
    7 Pauling electronegativity values (P) for selected elements of theperiodic table
    8 Ground state electronic configurations of the elements andionization energies
    9 Electron affinities
    10 Standard enthalpies of atomization (aH) of the elements at 298 K
    11 Selected standard reduction potentials (298 K)
    12 Selected bond enthalpy terms
    Answers to non-descriptive problems
    Index
    IUPAC: Brief Guide to the Nomenclature of Inorganic Chemistry
  • Citar Libro

Descargar Inorganic Chemistry

Tipo de Archivo
Idioma
Descargar RAR
Descargar PDF
Páginas
Tamaño
Libro
Inglés
1297 pag.
67 mb

Déjanos un comentario

No hay comentarios

guest
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x